Extension of high power deuterium operation of negative ion based neutral beam injector in LHD

Katsunori Ikeda and LHD-NBI team

National Institute for Fusion Science (NIFS), JAPAN

18th International Conference on Ion sources 2019 Lanzhou, China
Contents

• **Introduction**
 • NBI for Large Helical device, and previous result and issues
 • Idea for reduction of co-extracted electron current

• **Improvement for injection beam power**
 • Update for beam accelerator
 • Operation results
 • Reduction of electron current and thermal load on a grid

• **Summary**
Introduction -- LHD and NB injectors --

--- Deuterium operation was initiated in 2017---

2 x **P-NBI** (Positive ion based)

- **Optimized D operation**
 - 60 keV – 9 MW (BL4)
 - 80 keV – 9 MW (BL5)

3 x **N-NBI** (Negative ion based)

- **Optimized H operation** (BL1, BL2, BL3)
 - 180 keV – 5 MW (H)/ beam line
- Only operation gas change to D
 - 180 keV – < 2.5 MW (D)

at 1st Deuterium operation
Performance and Issues for NNBI

$3 \times \text{N-NBI}$ (Negative ion based)

- Optimized Hydrogen (BL1, BL2, BL3)
 - 180 keV, 5 MW (H) / beam line
- Only operation gas change to D
 - 180 keV, < 2.5 MW (D)

- Injection power decrease below half.
 - Decrease of negative ion current
- Increasing electron current / ion current ratio
 - Increase of electron current
 - \rightarrow thermal load of the extraction grid
Performance and Issues

3 x N-NBI (Negative ion based)

- Optimized Hydrogen (BL1, BL2, BL3)
 180 keV, 5 MW (H)/ beam line
- Only operation gas change to D
 180 keV, < 2.5 MW (D)

- Injection power decrease below half.
 = Decrease of negative ion current
- Increasing electron current / ion current ratio
 = Increase of electron current
 -> thermal load of the extraction grid

High power beam operation was limited by co-extracted electron current in high-power discharge

1st D operation in 2017

Scope of development in LHD-NNBI

• **Increase of injection beam power** without increase of beam energy

 => increase D^- current

• **Decrease of I_e/I_D^-** in high power beam operation using high power arc discharge

 From the result of small negative ion source in the testbed …
Idea of electron reduction by previous results

Electrons are shielded by EDM field

Negative- ion rich plasma produced inside of EDM robe

Distribution of extracted negative ions with beam

Idea of electron reduction by previous results

Electrons are suppressed by EDM field

Negative- ion rich plasma produced inside of EDM robe

Distribution of extracted negative ions

Expansion of negative ion rich area => co-extracted electrons will be decrease

Update for beam accelerator and results of 2$^{\text{nd}}$ deuterium operation
Modification of Accelerator

Potential
-180 kV Plasma Grid (PG)
-170 kV Extraction Grid (EG)
-170 kV Steering Grid (SG)
0 V Grounded Grid (GG)

770 apertures
8 mm (2017)
New configuration of short ext. gap
12% up
Increase B on PG surface

Electron Deflection Magnet (EDM)
(1) Inside EDM field
Bending co-extracted electrons
=> EG (thermal)

(2) Outside EDM field
Important role for electron shielding in the vicinity of PG and maintaining negative ion rich plasma
Reduction of I_e/I_{D^-} current ratio

$\frac{I_e}{I_{D^-}} : 0.38 \Rightarrow 0.28$
(@ 180kW/source)

$\frac{I_e}{I_{D^-}} \sim$ maintaining 0.31 in high power

25% decrease in I_e/I_{D^-}

- Co-extracted electron current decreases well by strong EDM field in D operation.
- Electron-ion current ratio is as low as that in H operation.
Increase of D^- current

- Negative ion current is not saturated by high arc discharge power
- Efficiency of arc discharge power is the same

\Rightarrow Update to increase negative ion current will be needed
Reduction of thermal load on the accelerator

No damage in the EG and GG

40% reduction for EG thermal load

20% reduction for GG thermal load
Operation summary in 2018

Total injection power: 6.3 MW \Rightarrow 7.0 MW \Rightarrow 8-9 MW

BL1
- **2018**: Hydrogen optimization (6MW by H)
 - Large co-extracted electron current in D
- **2019**: Update PG and PG-EG 6.5 mm to decrease co-extracted electron in D operation

BL2
- **2018**: Aperture type GG \Rightarrow Slot type GG
 - Increase injection power but I_e/I_D is still large.
- **2019**: Update PG-EG 7mm same as BL3

BL3
- **2018**: PG-EG 7mm is well performed 2.9MW beam injection and $I_e/I_D \sim 0.31$ using high power arc discharge
- **2019**: New magnetic filter position will be tested

Testbed: Progressive accelerator design will be tested

Deuterium

Injection power

<table>
<thead>
<tr>
<th>Beam line number</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

I_e/I_D

<table>
<thead>
<tr>
<th>Beam line number</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Summary

• Performance of negative-ion source for LHD-NNBI is improved by small change in the beam accelerator. (PG-EG : 8mm => 7mm)

• D⁻ current is improved : 46A => 55.4A (j = 233 A/m²).
 \(I_e/I_{D^-} \) current ratio is improved : 0.38 => 0.28 in the same arc power condition, which is maintained 0.31 at maximum D⁻ current. Thermal load on the beam accelerator large decreased (60% in EG).

• Injection beam power is improved : 2.3 MW => 2.9 MW in BL3. Total injection power also increased 6.3 MW => 7.0 MW by 3 beam lines.