Overview of High Intensity Ion Source Development in the Past 20 Years at IMP

L. Sun

On behalf of the team members at IMP

Institute of Modern Physics, CAS, 730000, Lanzhou, China

ICIS’19, Sept. 1~6, 2019, Lanzhou, China
Outline

- The needs of high intensity ion beams at IMP
- Development of diverse high intensity ion sources at IMP
- Opportunities and Challenges
Needs

- Nuclear physics
- Atomic physics
- Nuclear chemistry
- Radiation chemistry
- Material science
- Hadron physics
- High Energy Density physics
- Accelerator physics

- Radiation biology
- Radiation medical science
- Radiation material
- Advanced nuclear energy
- Nuclear detecting technology

- Ion Accelerator
- Large scale experiment facilities
- Special experiment facilities

◆ >400 internal researchers
◆ >1000 ion beam users
Heavy Ion Research Facility in Lanzhou (HIRFL)

SSC (K=450) - 1990s
- 100 AMeV (H.I.), 110 MeV (p)

SFC (K=69) - 1970s
- 10 AMeV (H.I.), 17–35 MeV (p)

CSR(Cooling Storage Ring)
- CSRm 162 m - 2000s
 - 1000 AMeV (H.I.), ≤ 2.8 GeV (p)

RIBLL1
- RIBs at tens of AMeV

RIBLL2
- RIBs at hundreds of AMeV

CSRé 128 m

High intensity high charge state ion beams
 Needs

CiADS (2019-2025)

2.45 GHz ECR source

HIMM

14 GHz ECR source

HIAF (2018-2025)

HFRS

SECR

iLINAC

SESRI (2018-2022)

18 GHz ECR source
Development of Ion Sources: ECRIS

- Multi-purpose
- Medium charge state ions for HIRFL
- Heavy ions for HIRFL

Graph showing the relationship between maximum charge states and microwave frequency (GHz).
Highly Charged ECRIS

Electron Cyclotron Resonance Ion Source

\[\omega_{ce} = \frac{e \cdot B_{ecr}}{m_e} \]

- \(I_i^q = \frac{1}{2} \frac{n_i^q q e V_{ex}}{\tau_i^q} \) ion density for species i charge q
- \(\tau_i^q \) Confinement time for species i charge q
- \(\sum_{i,q} n_i^q q_i = n_e \) (Plasma neutrality)

- RF dispersion equation at resonance: \((n_e T_e) \approx \left(\frac{m_e e_0 \omega_{df}}{e^2} \right) m_e c^2 \)

- Plasma Stability condition: \(\beta = \frac{n_e k_b T_e}{B^2} < 1 \)
 As \(n_e \uparrow \) \(B \uparrow \)
Highly Charged ECRIS

Family of ECRISs

All permanent magnet ECRIS
- Nanogan series ion sources
- BIE series ion sources
- LAPECR1, LAPECR2, LAPECR3
- Kei1, Kei2
- SOPHIE
- Operated 2.45 ~ 14 GHz

Classical RM ECRIS
- GTS source
- AECR-U
- LECR2, LECR3, LECR4
- RIKEN 18 GHz
- ECR4, Caprice
- Operated 10 ~ 18 GHz

Hybrid SC-ECRIS
- RAMSE, SHIVA
- A-PHOENIX
- PKDELIS
- Dubna 18 GHz
- Operated 14 ~ 18 GHz

Fully SC-ECRIS
- SERSE 18 GHz
- VENUS 28GHz
- SECRAL 18~28 GHz
- SUSI 18~24 GHz
- RIKEN SCECRIS 28 GHz
- Operated 18 ~ 28 GHz

For intense low and medium charge state ion beams: O^{6+}, Ar^{8+}, Xe^{20+}...

For intense medium and high charge state ion beams: Ar^{14+}, Xe^{27+}, Bi^{30+}...

For intense high charge state ion beams: Ar^{16+}, Xe^{30+}, Bi^{36+}, U^{38+}...
Highly Charged ECRIS: Superconducting Sources

- $J_c \leq 11.0 \, \text{A/mm}^2$
- $B_r \leq 1.4 \, \text{T}$
- $\omega_{ecr} \geq 18 \, \text{GHz}$

<table>
<thead>
<tr>
<th>ω_{ecr} (GHz)</th>
<th>B_{ecr} (T)</th>
<th>B_{inj} (T)</th>
<th>B_r (T)</th>
<th>PM</th>
<th>RM</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.36</td>
<td>1.4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>0.52</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.64</td>
<td>2.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Superconducting technology to high performance ECRISs with $\omega_{ecr} \geq 18 \, \text{GHz}$
Highly Charged ECRIS: Superconducting Sources

- VENUS/LBNL
- SCECRIS/RIKEN
- SuSI/MSU
- SERSE/INFN-LNS
- ...

Conventional

Reversed Design

Min-B Confinement
Highly Charged ECRIS: Superconducting Sources

Operation Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SECRLAL-II</th>
<th>SECRLAL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{rf} (GHz)</td>
<td>18-28</td>
<td>18-24</td>
</tr>
<tr>
<td>Axial Field Peaks (T)</td>
<td>3.7 (Inj.), 2.2 (Ext.)</td>
<td>3.7 (Inj.), 2.2 (Ext.)</td>
</tr>
<tr>
<td>Mirror Length (mm)</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>No. of Axial SNs</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B_z at Chamber Inner Wall (T)</td>
<td>2.0</td>
<td>1.7/1.83</td>
</tr>
<tr>
<td>Coldmass Length (mm)</td>
<td>~810</td>
<td>~810</td>
</tr>
<tr>
<td>SC-material</td>
<td>NbTi</td>
<td>NbTi</td>
</tr>
<tr>
<td>Magnet Cooling</td>
<td>LHe bathing</td>
<td>LHe bathing</td>
</tr>
<tr>
<td>Warm bore ID (mm)</td>
<td>142.0</td>
<td>140.0</td>
</tr>
<tr>
<td>Chamber ID (mm)</td>
<td>125.0</td>
<td>116.0/120.5</td>
</tr>
<tr>
<td>Dynamic cooling power (W)</td>
<td>~6</td>
<td>0</td>
</tr>
</tbody>
</table>

* Under upgrade, see W. Lu@TueP18
Highly Charged ECRIS: Superconducting Sources

Magnet Training Story:

- Lower and Lower risk of Training Quench after warm-up course
- Reach >100% design currents
- No quench happens during operation
Highly Charged ECRIS: Superconducting Sources

SECRLAL-II off-line test bench

28 GHz

Ø32 mm TE₀₁

<table>
<thead>
<tr>
<th>No.</th>
<th>Frequencies (GHz)</th>
<th>Used Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>18+28</td>
<td>12.4</td>
</tr>
<tr>
<td>3</td>
<td>28+45</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>18+28+45</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Highly Charged ECRIS: Superconducting Sources

<table>
<thead>
<tr>
<th>Ion</th>
<th>VENUS 28+18 GHz (~2018, 10 kW)</th>
<th>SECRAL 24+18 GHz (2016, 78 kW)</th>
<th>SuSI 24+18 GHz (~2014, 5.5 kW)</th>
<th>SECRAL II 28+18 GHz (~2018, 10 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^{6+}</td>
<td>4750</td>
<td>2300</td>
<td>2200</td>
<td>6700</td>
</tr>
<tr>
<td>O^{7+}</td>
<td>1900</td>
<td>810</td>
<td>1400</td>
<td>1750</td>
</tr>
<tr>
<td>Ar^{12+}</td>
<td>1060</td>
<td>1420</td>
<td>860</td>
<td>1190</td>
</tr>
<tr>
<td>Ar^{14+}</td>
<td>840</td>
<td>846</td>
<td>530</td>
<td>1040</td>
</tr>
<tr>
<td>Ar^{16+}</td>
<td>525</td>
<td>350</td>
<td>220</td>
<td>620</td>
</tr>
<tr>
<td>Ar^{17+}</td>
<td>120</td>
<td>50</td>
<td>--</td>
<td>130</td>
</tr>
<tr>
<td>Ar^{18+}</td>
<td>4.0</td>
<td>--</td>
<td>--</td>
<td>14.6</td>
</tr>
<tr>
<td>Kr^{18+}</td>
<td>770</td>
<td>--</td>
<td>--</td>
<td>1030</td>
</tr>
<tr>
<td>Kr^{23+}</td>
<td>420</td>
<td>--</td>
<td>--</td>
<td>436</td>
</tr>
<tr>
<td>Kr^{28+}</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>146</td>
</tr>
<tr>
<td>Kr^{30+}</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>Kr^{31+}</td>
<td>7.0</td>
<td>--</td>
<td>--</td>
<td>7</td>
</tr>
<tr>
<td>Kr^{32+}</td>
<td>7.0</td>
<td>--</td>
<td>--</td>
<td>0.5</td>
</tr>
<tr>
<td>Xe^{25+}</td>
<td>/</td>
<td>1100</td>
<td>920</td>
<td>/</td>
</tr>
<tr>
<td>Xe^{27+}</td>
<td>705</td>
<td>360</td>
<td>120</td>
<td>870</td>
</tr>
<tr>
<td>Xe^{30+}</td>
<td>330</td>
<td>120</td>
<td>22.6</td>
<td>365</td>
</tr>
<tr>
<td>Xe^{34+}</td>
<td>104</td>
<td>22.6</td>
<td>12</td>
<td>135</td>
</tr>
<tr>
<td>Xe^{38+}</td>
<td>26</td>
<td>12</td>
<td>--</td>
<td>56</td>
</tr>
<tr>
<td>Xe^{42+}</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>16.7</td>
</tr>
<tr>
<td>Xe^{44+}</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>3.9</td>
</tr>
<tr>
<td>Xe^{45+}</td>
<td>0.88</td>
<td>0.1</td>
<td>--</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Highly Charged ECRIS: Superconducting Sources

- High power microwave coupling via optimum WG opening
- Homogenous ECR surface microwave power radiation → better plasma stability

Efficient microwave coupling & ECRH

See Junwei Guo@WedI04
Highly Charged ECRIS: Superconducting Sources

Multi-frequency ECRH

- Manipulate HCl production with multi-frequency ECRH
- Interfere with HCl confinement
- Very effective for HCl beams

L. Sun@TuA5, ECRIS’18
Highly Charged ECRIS: Superconducting Sources

ECR plasma investigation

- T_s increases approximately linearly with the increment of B_{min}/B_{ecr} and saturates above a threshold (for 18GHz: \sim0.78, 24GHz: \sim0.76)
- Electron cyclotron instabilities have been detected simultaneously when T_s is saturated

- T_s decreases with the increase of the gradient at the resonance zone at low mirror ratio
- T_s is not sensitive to the gradient at high mirror ratio when B_{min} is constant

See Jibo Li @MonM02
Highly Charged ECRIS: Superconducting Sources

- Low RF power @18 GHz
- Dual RF feeding @24 GHz + 18 GHz
- Refined oven & new components @24 GHz + 18 GHz
- Dual RF feeding @24 GHz + 18 GHz + Cartridge oven
- Refined cooling to ECR area
- Improved metallic oven techniques
Highly Charged ECRIS: Superconducting Sources

Uranium beam production

A Refined Inductive Heating Oven

Φ18/24 mm
2 mm BN
1.0 mm BN
1.25 mm ZrO2
1 mm Ta
Coils

ID= 8 mm

Ø3 mm copper tube

IHO-2018

Crucible, Thermal Shield & Insulator

Off-line Test

Please See Wang Lu@TueM02

Max. 450 eμA
U^{33+} produced
Intense HCl beams studies

Beam quality and dynamics issues:
- Beam correlation (transverse coupling)
- Sources of high order aberration
- Beam quality improvement

See Yao Yang@WedM01

PEMiL
4-D emittance mapping for better beam quality evaluation

See Xing Fang@WedP16

Sextupole Magnet
2nd order aberration correction
Highly Charged ECRIS: Impact to HIRFL

SECRAL routine operation

- SECRAL served >31,000 hours beam time
 - >58% highly charged metallic ions
 - 26 ion species

SECRAL-II

Ion source drain current (eMA)

- Operation Time log (hrs)

>1,000 hours ~100 eμA Kr^{25+} with SECRAL-II
Highly Charged ECRIS: Room Temperature Sources

LECR1
10 GHz (1990)

- Ar^{9+}: 320 µA, Ar^{11+}: 80 µA
- Kr^{15+}: 100 µA, Kr^{17+}: 70 µA

LECR2
14.5 GHz (1997)

- O^{7+}: 140 µA, Ar^{11+}: 185 µA
- Kr^{19+}: 50 µA, Xe^{26+}: 50 µA
- Ca^{11+}: 130 µA, Fe^{13+}: 65 µA
- Zn^{13+}: 50 µA, Pb^{30+}: 8 µA

LECR3
14.5 GHz (2000)

- O^{7+}: 240 µA, Ar^{11+}: 325 µA
- Ar^{8+}: 1.0 nA, Xe^{26+}: 95 µA
- Fe^{13+}: 141 µA, Ar^{17+}: 0.4 nA
- Ar^{18+}, Pb^{40+}: 0.2 µA

LECR4
18 GHz (2013)

- O^{7+}: 560 µA, Ar^{11+}: 620 µA
- Ar^{14+}: 180 µA, Xe^{27+}: 135 µA
- Bi^{31+}: 92 µA, Bi^{28+}: 170 nA
- U^{33+}: 31 µA

LECR5
18 GHz (2019)

Commissioning
Highly Charged ECRIS: **Room Temperature Sources**

LECR4-prototype ion source with Evaporative cooling technology:
Based on the principle of **phase change heat transfer**, high insulating and room-temperature boiling point **organic coolant** is used to absorb the heat of electrical equipment.

Typical source parameters

<table>
<thead>
<tr>
<th></th>
<th>LECR4</th>
<th>LECR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency (GHz)</td>
<td>18</td>
<td>14.5</td>
</tr>
<tr>
<td>Plasma Chamber (mm)</td>
<td>Ø76</td>
<td>Ø76</td>
</tr>
<tr>
<td>Axial Injection field (T)</td>
<td>>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Axial Extraction field (T)</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Max. Radial field (T)</td>
<td>1.0-1.1</td>
<td>1.0-1.1</td>
</tr>
<tr>
<td>Total Power (kW)</td>
<td>195</td>
<td>100</td>
</tr>
</tbody>
</table>
HCl beams favors:
- High fields
- Higher frequency

O^{7+} 560 μA, Ar^{11+} 620 μA
Ar^{14+} 180 μA, Xe^{27+} 135 μA
Bi^{31+} 92 μA, Bi^{28+} 170 eμA
U^{33+} 31 eμA.
Highly Charged ECRIS: Room Temperature Sources

LECR5 Typical Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>LECR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{rf} (GHz)</td>
<td>18</td>
</tr>
<tr>
<td>P_{rf} (kW)</td>
<td>2.5</td>
</tr>
<tr>
<td>B_{inj} (T)</td>
<td>2.4</td>
</tr>
<tr>
<td>B_{min} (T)</td>
<td>0.3 ~ 0.63</td>
</tr>
<tr>
<td>B_{ext} (T)</td>
<td>1.4</td>
</tr>
<tr>
<td>B_{rad} (T)</td>
<td>1.2</td>
</tr>
<tr>
<td>L_{mirror} (mm)</td>
<td>340</td>
</tr>
<tr>
<td>Chamber ID (mm)</td>
<td>80</td>
</tr>
<tr>
<td>Extraction HV (kV)</td>
<td>30</td>
</tr>
</tbody>
</table>

An advanced room temperature for SESRI Project needs $>50 \, \mu\text{A} \, ^{209}\text{Bi}^{32+}$
Highly Charged ECRIS: **Room Temperature Sources**

See Cheng Qian@TueP19

Preliminary Commissioning:
- 1.35 emA O^{6+}
- 0.45 emA O^{7+}
- 0.26 emA Ar^{12+}
Highly Charged ECRIS: Impact to HIRFL

Contributed by Superconducting and Room Temperature ECR ion source

Beam intensities from SFC

Beam Energies from SFC

Beam Energies from CSRm
Highly Charged ECRIS: Impact to HIRFL

- Synthesis of 20 new nuclides
- Observation of super heavy nuclide 271Ds (Z=110)
- First mass measurement of 30 short-lived nuclides
- Post evaluation of CSR
Highly Charged ECRIS: Contribution to the Community

Records in solid marks made by IMP
Highly Charged ECRIS: Permanent Magnet Sources

LAPECR1
14.5 GHz (2002)

LAPECR2
14.5 GHz (2005)

LAPECR3
14.5 GHz (2012)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Intensity (eμA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He$^+$</td>
<td>5000</td>
</tr>
<tr>
<td>He$^{2+}$</td>
<td>2500</td>
</tr>
<tr>
<td>N$^{2+}$</td>
<td>>1700</td>
</tr>
<tr>
<td>N$^{5+}$</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ion</th>
<th>Intensity (eμA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$^{6+}$</td>
<td>1000</td>
</tr>
<tr>
<td>Ar$^{8+}$</td>
<td>460</td>
</tr>
<tr>
<td>Ar$^{17+}$</td>
<td>2</td>
</tr>
<tr>
<td>Xe$^{20+}$</td>
<td>85</td>
</tr>
<tr>
<td>Ag$^{19+}$</td>
<td>84</td>
</tr>
<tr>
<td>U$^{31+}$</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ion</th>
<th>Intensity (eμA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He$^{2+}$</td>
<td>>6000</td>
</tr>
<tr>
<td>C$^{4+}$</td>
<td>>600</td>
</tr>
<tr>
<td>C$^{5+}$</td>
<td>260</td>
</tr>
<tr>
<td>O$^{6+}$</td>
<td>360</td>
</tr>
<tr>
<td>Ar$^{9+}$</td>
<td>120</td>
</tr>
<tr>
<td>Ar$^{11+}$</td>
<td>50</td>
</tr>
</tbody>
</table>
Highly Charged ECRIS: Permanent Magnet Sources

Typical ion beams from 29 atoms:
- Gaseous ions: H, D, He, N, O, Ne, Ar, Xe, Kr, Cl, F
- Metal ions: U, Bi, Pb, Au, Ag, Eu, Fe, Ni, Ti, Mg, Cs, C, Li
- Ions from non-metal solids: C, Si, I, S, Br

Ion Beams Available:
- Ions: H⁺—U⁴³⁺
- Platform Voltage: 5 kV—320 kV
- Ion Energy: 5 keV—10 MeV
- Ion species: 200 /Year (i.e. Xe⁵⁺—Xe³⁰⁺, Ar¹⁺—Ar¹⁶⁺)

Total operation time: 85,000 hours
- Experiment time: 67,000 hours ----85%
- Down time: 4,300 hours --------7%
- Machine study: 4,700 hours -----7.7%
- Completed experiments: >670
Highly Charged ECRIS: Permanent Magnet Sources

LAPECR3 Test Bench

C⁴⁺ current

εₓ.n.rms = 0.06 πmm.mrad
εᵧ.n.rms = 0.10 πmm.mrad

See Jiaqing Li@MonP30
Laser Ion Source Development

- Production of high intensity heavy ion beams
- Reliable intense C^{6+} beam production
- Investigation on DPIS
- Investigation on laser produced plasma
Laser Ion Source Development

Production of high intensity heavy ion beams

- **Light to medium-mass elements:**
 - Currents--tens of emA
 - CSD--narrowed down around high charge states

- **Heavy elements:**
 - both currents and charge states much lower—needing of higher laser power

Time waveforms of the total ion beam pulses

Charge state distributions
Laser Ion Source Development

Reliable intense C\(^{6+}\) beam production

- Repeatability of laser focus condition on target
 - Stability of laser system
 - Precision of target movement

- Long-term capability of target
 - Cylindrical target with much larger surface compared with flat one

Repeatability of carbon ion pulses @0.33 Hz

Statistics for 2000 carbon ion pulses

<table>
<thead>
<tr>
<th>Pulse parameter</th>
<th>Mean value</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak current (emA)</td>
<td>46.5</td>
<td>3.1 (6.7%)</td>
</tr>
<tr>
<td>Total charge quantity (10(^{-7}) C)</td>
<td>1.38</td>
<td>0.048 (3.5%)</td>
</tr>
<tr>
<td>Pulse duration-FWHM (μs)</td>
<td>1.64</td>
<td>0.16 (10%)</td>
</tr>
</tbody>
</table>

See Huanyu Zhao@TueM03
Laser Ion Source Development

DPIS investigation

- With DPIS, C$_{6}^{+}$ was accelerated to 596 keV/u with the peak current of 13 emA

- A Hybrid Single Chamber-HSC (RFQ+DTL) PoP demonstrated

L. Lu, et al., PRAB 18, 111002 (2015)
2.45 GHz Proton Sources

1999
Neutron Source

2011
Neutron Source

2014
C-ADS

2016
JUNA

2017
39Ar Enrichment
2.45 GHz Proton Sources

Compact Pulsed Hadron Source (CPHS) at Tsinghua University

Ion Source Parameters

<table>
<thead>
<tr>
<th>Para.</th>
<th>Required</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (keV)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>H⁺ Current (mA)</td>
<td>≥ 60 emA</td>
<td>66</td>
</tr>
<tr>
<td>Repetition rate (Hz)</td>
<td>50 Hz</td>
<td>50</td>
</tr>
<tr>
<td>Pulse width (ms)</td>
<td>0.5 ms</td>
<td>0.5</td>
</tr>
<tr>
<td>Reliability</td>
<td>>120 hrs</td>
<td>120</td>
</tr>
<tr>
<td>Operation time (hrs)</td>
<td>>1000/yr</td>
<td></td>
</tr>
</tbody>
</table>

~10^{13} n/s epithermal-to-cold neutron yield for education, instrumentation development, and industrial applications

Courtesy of Q. Z. XING, et al from Tsinghua University

66 mA

LEBT output beam
2.45 GHz Proton Sources

ECR+ LEBT

C-ADS RFQ

C-ADS SRF Linac

<table>
<thead>
<tr>
<th>Parameter</th>
<th>status</th>
<th>request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle energy (keV)</td>
<td>35keV</td>
<td>35keV</td>
</tr>
<tr>
<td>Proton current (mA)</td>
<td>≥10mA/dc</td>
<td>10mA/dc</td>
</tr>
<tr>
<td>Beam tuning (uA)</td>
<td>~10</td>
<td>≤100</td>
</tr>
<tr>
<td>Reliability (hrs)</td>
<td>>24</td>
<td>>8</td>
</tr>
<tr>
<td>Fast Chopper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast protect</td>
<td>1 μs</td>
<td>≤5 μs</td>
</tr>
<tr>
<td>Leading edge</td>
<td>17 ns</td>
<td>20 ns</td>
</tr>
<tr>
<td>Trailing edge</td>
<td>17 ns</td>
<td>20 ns</td>
</tr>
<tr>
<td>frequency</td>
<td>1-10 kHz</td>
<td>1-20 Hz</td>
</tr>
</tbody>
</table>

- **Total operation time >4,000 hours**
- **Fully satisfy the high intensity SRF-linac commissioning**
 - **Pulsed: 26.1 MeV@12.6 mA**
 - **CW: 25 MeV@1 mA**
2.45 GHz Proton Sources

Jinping Underground Laboratory for Nuclear Astrophysics (JUNA)

Deep underground provides best natural background condition

- $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$
- $^{13}\text{C}(\alpha, n)^{16}\text{O}$
- $^{25}\text{Mg}(p, \gamma)^{26}\text{Al}$
- $^{19}\text{F}(p, \alpha)^{16}\text{O}$

<table>
<thead>
<tr>
<th>Source type</th>
<th>JUNA Facility Design</th>
<th>Ion Source Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source type</td>
<td>ECR source</td>
<td>2.45 GHz +14GHz</td>
</tr>
<tr>
<td>Beam</td>
<td>H$^+$</td>
<td>10 mA</td>
</tr>
<tr>
<td></td>
<td>He$^+$</td>
<td>10 mA</td>
</tr>
<tr>
<td></td>
<td>He$^{2+}$</td>
<td>1~2.5 mA</td>
</tr>
<tr>
<td>Beam energy</td>
<td>70~800 keV</td>
<td>20~50 kV</td>
</tr>
</tbody>
</table>

See Qi Wu@MonP27
2.45 GHz Proton Sources

- \[^{39}\text{Ar}\] enrichment by a factor of \(>100\)
- \[^{39}\text{Ar}\] enrichment + ATTA = \[^{39}\text{Ar}\] dating

See Zehua Jia@MonP28
Opportunities and Challenges

HIAF

- **2018-2025**

 - **BRing:** Booster ring
 - C: 569 m
 - Bp: 34 Tm
 - E: 0.834 GeV/u
 - I: 1.0×10^{11} ppp (U^{35+})

 - **SRing:** Spectrometer ring
 - C: 278 m
 - Bp: 15 Tm

 - **iLinac:** Superconducting linac
 - L: 100 m
 - E: 17 MeV/u ($^{238}U^{35+}$)
 - I: 1 emA

 - **SECR**

Phase-I (2025)
- CW: 0.5 emA U^{46+}
- 1.0 emA $U^{35+}/0.3-5$ Hz@0.2-2 ms

Phase-II (2030)
- 10 emA $U^{46+}/20$ Hz@2 ms
Opportunities and Challenges

FEKR (First 4th generation ECR ion source)

Specs. of a 45 GHz ECRIS

<table>
<thead>
<tr>
<th>Specs</th>
<th>Unit</th>
<th>45 GHz ECRIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>GHz</td>
<td>45</td>
</tr>
<tr>
<td>Mirror Fields</td>
<td>T</td>
<td>6.4/3.2</td>
</tr>
<tr>
<td>B_{rad}</td>
<td>T</td>
<td>3.2</td>
</tr>
<tr>
<td>Mirror Length</td>
<td>mm</td>
<td>~500</td>
</tr>
<tr>
<td>Magnet coils</td>
<td>/</td>
<td>Nb$_3$Sn</td>
</tr>
<tr>
<td>Nb$_3$Sn</td>
<td></td>
<td>$J>1500$ A/mm2@12T</td>
</tr>
<tr>
<td>Cooling Capacity@4.2 K</td>
<td>W</td>
<td>10.0</td>
</tr>
</tbody>
</table>

HCl currents with a 4th G. ECRIS:
- $A=12$~40, 200 puA (dc)
- $A=40$~100, 100 puA (dc)
- $A=100$~238, 30 puA (dc), 50 puA (pulse)

Obvious progress been made, see Poster TueP20 by H. W. Zhao
Opportunities and Challenges

- Long term stable operation for ECR with high beam intensity at the power of >5 kW (>10 MW/cm² heat sink)
 - Stability
 - Reliability

- Beam quality for high intensity ion beams
 - Emittance control
 - High efficiency transmission

![Plasma heat sink into plasma chamber](image)
Opportunities and Challenges

Frequency Campaign

- Higher B?
- Higher frequency?
- Higher Power?

14 GHz
28 GHz
45 GHz
60 GHz

Golovanivsky's Diagram

14 GHz
18 GHz
28 GHz
45 GHz
60 GHz
Opportunities and Challenges

Solutions to 10 emA $^{46+}$?

- Intense medium charged ion source
- Solid charge stripper
- Intense beam heavy ion linac

Similar to UNILAC

- ~ 10 emA $^{46+}$
 - C Stripper
 - DTL 1.5 MeV/u
 - RFQ 0.2 MeV/u
 - Intense medium charge state ion source
 - ~20 emA $^{238}U^{15+}$

- $\sim X$ emA $^{46+}$
 - Ion Trap
 - Extraction
 - FECR source CW/pulsed
 - ~ 0.5 emA $^{238}U^{46+}$

> 2.7×10^{13} particles

- Trapping efficiency
- Trap capacity
- Extraction efficiency

Private discussion with D. Xie
Summary

- Diverse and multi-purpose ion sources developed successfully at IMP over the last 20 years
- Breakthroughs in both techniques and physics realized
- Ion accelerator developments benefit from the R&D work
- Opportunities and big challenges...
 - Joint research
 - Postdocs
 - Long-term PIFI visitors
- Acknowledgement
 - Ion source team members
 - Accelerator Center and Linear Accelerator Center at IMP
 - Colleagues from LBNL, RIKEN, MSU, JINR/Dubna, CEA/Saclay, CEA/Grenoble, IAP/RAS, GSI, BNL, PKU, CIAE, IEE/CAS
Thanks for your Attention!!